

Use of Fine Milling (Carbide Grinding)
To Stretch Highway Maintenance Budgets

Gary Condon Manager, Technical Cutting Systems August, 2010

- Cost effective pavement preservation strategies are more important than ever in today's tough economic climate.
- One means of extending pavement life at significantly reduced cost compared to traditional mill & fill, is to resurface with thin hot-mix asphalt (HMA) overlays – a case study will be presented.
- Thin HMA overlays require smoother fine milled or carbide ground surfaces so that the peaks and valleys of the milled surface do not reflect through the new thin overlay paved surface.
- Fine milling or carbide grinding utilizing 0.20 inch (5 mm) tooth spacing effectively removes distressed pavement and eliminates the need for multiple layers (scratch and/or leveling) and allows the option of thin-lift resurfacing that is not feasible under regular milling methods.

Highway maintenance budgets are tighter than ever - What should be done?

Why Fine Milling? What Can it Do?

- Restore safe skid resistance to worn, slippery pavement surfaces
- Remove wheel ruts or uneven pavement surfaces
- Roughen pavement surface to improve adhesion of thin wearing course or seal coat applications
- Allow milling crew to operate independently from paving due to surface texture that allows opening to traffic.
- Cost savings related to the reduced amount of material needed.
- Potential to use surface as milled over extended periods.

Fine Milling addresses above conditions at lower cost than traditional mill & fill.

Why Fine Milling? What Can it Do?

- Reduce Material Removed
- Reduce New Material Required
- Reduce Haul Trucks
- Reduce Time tied to Mill & Fill
- Reduce Overall Contractor Costs
- Reduce Overall Cost of Project
- Increase The mileage of road to be paved

Fine Milling addresses above conditions at lower cost than traditional mill & fill.

Fine Milling Advantages

- Scarify to a level below the over roll created by traffic.
- Maintain a considerable layer of original wearing surface.
- Restore surface with cover coat or sealer coat of choice.
- Utilize smaller aggregate in cover coat.
- Use super compacted area in high traffic zone as a base to bring road surface back to an "as new" condition.

Fine Milling addresses above conditions at lower cost than traditional mill & fill.

Case Study: I-75 in Georgia

Project Background

- Georgia Department of Transportation (GDOT) project to remove open graded friction coarse (OGFC) and replace it with a thin layer of porous European mix (PEM) on 15.6 miles of I-75
- The OGFC was in service for 10 years and was distressed
- The dense graded surface mix layer under the OGFC still good shape.
- However, normal practice involved milling the underlying surface layer as well due to following concerns:
 - Potential exists for a conventional milled surface to reflect through the thin layer of the Porous European mix
 - Surface water would flow through the porous surface layer and become trapped in the valleys of the milled surface. Conventional milled surface peak to valley height is 5/16 –inch or greater.
- The fine surface texture created by fine milling allowed the thin OG course layer to be placed directly on the ground surface of the dense graded base layer, eliminating the need for a scratch or leveling course.

Reduce the amount of material needing milled and reduce new asphalt required.

Case Study: I-75 in Georgia

Project Controls and Specifications

- Control milling depth within 1/16 inch (1.6mm) accuracy
- Control peak to valley height to 1/8 inch (3.2mm) or less
- Target smoothness of 825 mm / km, not to exceed 900 mm / km

Project Measurement Methods

- National Center for Asphalt Technology (NCAT) assisted in using Circular Track Meter (CTM) and Ultra Light Inertial Profiler (ULIP) to measure surface texture depth
- Laser Road Profiler (LRP) used to measure smoothness.

Controlling the quality of the milled surface texture is critical to success

Case Study: I-75 in Georgia

Project Results:

 Savings of \$58,000 per lane mile, or approximately \$5.4 million for the project.

Traditional 5/8" Spacing

0.2" (Micro) Spacing

Micro milling enabled significant savings

Other Means of Measuring Surface Texture

"Sand Test" or "Glass Bead Test" (Colorado DOT), Maryland (DOT)

- Pre-measured volume (200 ml) of glass beads used for retroreflectivity in lane striping, is poured onto the milled surface from a height not to exceed 4 inches.
- Pile of glass beads is then distributed evenly on the milled surface using a slow circular motion with a plastic disk, until the disk rests on the peaks of the milled surface.
- To pass the test, the glass beads must spread out to cover minimum area of 9.5 inch diameter circle. Anything less means the surface is too rough.

Milled surface texture is affected by:

- Drum design (bit spacing, wrap angle, bits per line)
- Drum RPM (faster RPM = smoother texture)
- Machine advance speed (faster machine speed = rougher texture)
- Drum Condition (Holders, teeth)
- Track pad condition
- Water system condition (tooth rotation)

How Ground Speed Affects Texture

	and the same of	facilities and the same of the	A Commence		Alexan			_	
ENGAGEMEN	IT LENG	GTH, ANGLE, A	ND TIME C/	ALCULA'	TIONS				
					I				
RPM=	97	7							
CUTTING RAD=	21								
DEPTH:	1								
		SUMP(IN/REV.)	PEAK HEIGHT(IN.)	SL(N.)	(N)	ENTANGLE (DEG.)	TOOLS ENGAGED(15 3 BITS)	TIME IN CUT (SEC.)	
ADVANCE=	20	247	0.0365	6.403	7.64	21.1	9.0	0.0363	20130
	40	4.95	0.1463	6.403	8.88	24.5	10.4	0.0421	169
	60	7.42	0.3306	6.403	10.11	27.9	11.9	0.0480	329
	80	9.90	0.5914	6.403	11.35	31.4	13.3	0.0539	499
	100	1237	0.9316	6.403	12.59	34.9	14.8	0.0599	659
RPM=	97	+			1	_	_	$\overline{}$	
CUTTING RAD=	21								
DEPTH:	3								
		SUMP(IN/REV)	PEAK HEIGHT(IN.)	SL(N.)	ENGAGEME NT LENGTH (IN.)	ENGAGEM ENTANGLE (DEG.)	TOOLS ENGAGED (153 BITS)	TIME IN CUT(SEC.)	
ADVANCE:	-20	247	0.0365	10.817	12.05	34.4	14.6	0.0591	
	40	4.95	0.1463	10,817	13.29	37.B	16.1	0.0649	1.03
	60	7.42	0.3306	10.817	14.53	41.2	17.5	0.0708	203
	80	9.90	0.5914	10.817	15.77	44.6	19.0	8.0767	309
	100	1237	0.9316	10.817	17.00	48.1	20.5	0.0827	409
RPM-	97			_				-	
CUTTING RAD=	21								
DEPTH-	10								
		SUMP(IN/REV.)	PEAK HEIGHT(IN.)	SL(N.)	ENGAGEME NT LENGTH (IN.)	ENTANGLE (DEG.)	TOOLS ENGAGED(15 3 BITS)	TME IN CUT(SEC.)	
ADVANCE:	20	2.47	0.0365	17.889	19.13	61.B	263	0.1062	15,43
	40	4.95	0.1463	17.889	20.36	65.2	27.7	0.1120	53
	60	7.42	0.3306	17.889	21,60	68.6	29.2	0.1179	119
	80	9.90	0.5914	17.889	22.84	72.0	30.6	0.1238	179
	100	1237	0.9316	17.889	24.07	75.5	32.1	0.1298	223

20 Feet per Minute Advance Rate Standard Spaced Drum

60 Feet per Minute Advance Rate Standard Space Drum

© 2010 Kennametal Inc. I. All.

100 Feet per Minute Advance Rate Standard Space Drum

60 Feet per Minute Advance Rate Fine Milling 0.20" Drum

Micro 0.20" (5mm) spacing

100 Feet per Minute Advance Rate Fine milling 0.20" Drum

Micro 0.20" (5mm) spacing

Fine Milling Road Milling

Micro 0.20" (5mm) spacing

© 2010 Kennametal Inc. I. All.

Fine Milling Surface Finish

© 2010 Kennametal Inc.

Fine Milling Surface Finish

© 2010 Kennametal Inc. I

Thank You